.


Sternengeburt - Das Leben nach dem stellaren Tod | Unser Universum

http://facebook.com/WissensMagazin ... Unser Universum (4): Sternengeburt - Das Leben nach dem stellaren Tod.

---
Bitte ABONNIEREN nicht vergessen:
• http://www.youtube.com/WissensMagazin
• http://www.youtube.com/WissenXXL
• http://www.youtube.com/WeltDerWissenschaft
• http://www.youtube.com/PlanetZukunft
• http://www.youtube.com/vipmagazin
Danke! :)
---

Ein großer Anteil der Sterne ist im Frühstadium des Universums vor über 10 Milliarden Jahren entstanden. Aber auch heute bilden sich noch Sterne. Die typische Sternentstehung verläuft nach folgendem Schema:

1. Ausgangspunkt für die Sternentstehung ist eine Gaswolke, die überwiegend aus Wasserstoff besteht, und die aufgrund ihrer eigenen Schwerkraft kollabiert. Das geschieht, wenn die Schwerkraft den Gasdruck dominiert, und damit das Jeans-Kriterium erfüllt ist. Auslöser können z.B. die Druckwelle einer nahen Supernova, Dichtewellen in der interstellaren Materie oder der Strahlungsdruck bereits entstandener Jungsterne sein.

2. Durch die weitere Verdichtung der Gaswolke entstehen einzelne Globulen (räumlich eng begrenzte Staub- und Gaswolken), aus denen anschließend die Sterne hervorgehen: Dabei entstehen die Sterne selten isoliert, sondern eher in Gruppen. Die Periode der Kontraktion dauert insgesamt etwa 10 bis 15 Millionen Jahre.

3. Bei der weiteren Kontraktion der Globulen steigt die Dichte und wegen der freiwerdenden Gravitationsenergie (d.h. erhöhter Gravitationsdruck) die Temperatur weiter an (Virialsatz; die kinetische Energie der Teilchen entspricht der Temperatur). Der freie Kollaps kommt zum Stillstand, wenn die Wolke im Farben-Helligkeits-Diagramm die so genannte Hayashi-Linie erreicht, die das Gebiet abgrenzt, innerhalb dessen überhaupt stabile Sterne möglich sind. Danach bewegt sich der Stern im Farben-Helligkeits-Diagramm zunächst entlang dieser Hayashi-Linie, bevor er sich auf die Hauptreihe zubewegt, wo das sogenannte Wasserstoffbrennen einsetzt, das heißt die stellare Kernfusion von Wasserstoff zu Helium durch den Bethe-Weizsäcker-Zyklus oder die Proton-Proton-Reaktion. Als Folge des Drehimpulses der Globule bildet sich eine Scheibe aus, die den jungen Stern umkreist, und aus der er weiter Masse akkretiert. Aus dieser Akkretionsscheibe können ein oder mehrere Sterne sowie Planeten entstehen. Diese Phase der Sternentwicklung ist jedoch bisher noch nicht gut erforscht. Aus der Ebene der Scheibe wird die Ekliptik. Bei der Akkretion aus der Scheibe bilden sich auch in beide Richtungen der Polachsen Materie-Jets, die eine Länge von über 10 Lichtjahren erreichen können.

Massereiche Sterne entstehen seltener als massearme. Dies wird beschrieben durch die Ursprüngliche Massenfunktion. Je nach Masse ergeben sich verschiedene Szenarien der Sternentstehung:

* Oberhalb einer gewissen Grenzmasse können Sterne durch den Akkretionsprozess vermutlich gar nicht entstehen, da diese Sterne bereits im Akkretionsstadium einen dermaßen starken Sternwind produzieren würden, dass der Massenverlust die Akkretionsrate übersteigen würde. Sterne dieser Größe, wie beispielsweise die blauen Nachzügler (engl. blue stragglers), entstehen vermutlich durch Sternkollisionen.

* Massereiche und damit heiße Sterne mit mehr als 8 Sonnenmassen kontrahieren vergleichsweise schnell. Nach der Zündung der Kernfusion treibt die UV-reiche Strahlung die umgebende Globule schnell auseinander und der Stern akkretiert keine weitere Masse. Sie gelangen deshalb sehr schnell auf die Hauptreihe im Hertzsprung-Russell-Diagramm. Der mit 265 Sonnenmassen schwerste bislang entdeckte Stern mit Kurzbezeichnung R136a1 ist etwas über 1 Million Jahre alt und befindet sich in einem Sternhaufen im Tarantelnebel der Großen Magellanschen Wolke. Bei seiner Entstehung könnte der Stern bis zu 320 Sonnenmassen gehabt haben.

* Sterne zwischen etwa 3 und 8 Sonnenmassen durchlaufen eine Phase, in der sie Herbig-Ae/Be-Sterne genannt werden. In dieser Phase befindet sich der Stern schon auf der Hauptreihe, akkretiert aber noch einige Zeit Masse.

* Masseärmere Sterne zwischen 0,07 und 3 Sonnenmassen bleiben nach der Zündung der Kernfusion noch einige Zeit in die Globule eingebettet und akkretieren weiter Masse. In dieser Zeit sind sie nur im infraroten Spektralbereich erkennbar. Während sie sich der Hauptreihe annähern, durchlaufen sie das Stadium der T-Tauri-Sterne.

* Objekte zwischen 13 und 75 Jupitermassen (oder 0,07 Sonnenmassen) erreichen ebenfalls die nötige Temperatur, um eine Kernfusion zu zünden, allerdings nicht die Fusion von Wasserstoff, sondern nur die von Lithium und Deuterium. Diese Objekte werden braune Zwerge genannt und sind hinsichtlich ihrer Masse zwischen den planetaren Gasriesen (bis 13 MJ) und Sternen angesiedelt. Im Gegensatz zu Sternen kann die freigesetzte Fusionsenergie die Kontraktion nicht stabilisieren, braune Zwerge werden daher als substellare Objekte bezeichnet.

(Quelle: Wikipedia)
.

Комментарии