An explanation of fractal dimension.

Home page: https://www.3blue1brown.com/

Brought to you by you: http://3b1b.co/fractals-thanks

And by Affirm: https://www.affirm.com/

Music by Vince Rubinetti: https://soundcloud.com/vincerubinetti/riemann-zeta-function

One technical note: It's possible to have fractals with an integer dimension. The example to have in mind is some *very* rough curve, which just so happens to achieve roughness level exactly 2. Slightly rough might be around 1.1-dimension; quite rough could be 1.5; but a very rough curve could get up to 2.0 (or more). A classic example of this is the boundary of the Mandelbrot set. The Sierpinski pyramid also has dimension 2 (try computing it!).

The proper definition of a fractal, at least as Mandelbrot wrote it, is a shape whose "Hausdorff dimension" is greater than its "topological dimension". Hausdorff dimension is similar to the box-counting one I showed in this video, in some sense counting using balls instead of boxes, and it coincides with box-counting dimension in many cases. But it's more general, at the cost of being a bit harder to describe.

Topological dimension is something that's always an integer, wherein (loosely speaking) curve-ish things are 1-dimensional, surface-ish things are two-dimensional, etc. For example, a Koch Curve has topological dimension 1, and Hausdorff dimension 1.262. A rough surface might have topological dimension 2, but fractal dimension 2.3. And if a curve with topological dimension 1 has a Hausdorff dimension that *happens* to be exactly 2, or 3, or 4, etc., it would be considered a fractal, even though it's fractal dimension is an integer.

See Mandelbrot's book "The Fractal Geometry of Nature" for the full details and more examples.

------------------

3blue1brown is a channel about animating math, in all senses of the word animate. And you know the drill with YouTube, if you want to stay posted about new videos, subscribe, and click the bell to receive notifications (if you're into that).

If you are new to this channel and want to see more, a good place to start is this playlist: https://www.youtube.com/playlist?list=PLZHQObOWTQDPHP40bzkb0TKLRPwQGAoC-

Various social media stuffs:

Twitter: https://twitter.com/3Blue1Brown

Facebook: https://www.facebook.com/3blue1brown/

Reddit: https://www.reddit.com/r/3Blue1Brown

## ÐšÐ¾Ð¼Ð¼ÐµÐ½Ñ‚Ð°Ñ€Ð¸Ð¸